Formation of the first massive star clusters and their feedback on galaxies at \(z > 3 \)

Oleg Gnedenin
(University of Michigan)

with Andrey Kravtsov (Chicago), Jose Prieto (Ohio State), and Sasha Muratov (Michigan)
every old cluster was young sometime

how?
when?
where?
globular clusters are old and low (but non-zero) metallicity
globular clusters are dense

Average density at half-light radius $\sim 10^2 - 10^5 \, M_\odot \, \text{pc}^{-3}$
The Monoceros R2 Molecular Cloud Complex
Use hydrodynamic simulations to find molecular clouds

300 kpc (physical)

14 kpc

20 pc

Kravtsov & OG (2005)
Masses and sizes of model GCs are in excellent agreement with the observations of young clusters.
young star clusters in the Galaxy form in self-gravitating cores of molecular clouds with $\rho_{\text{gas}} > 10^4 \, M_\odot \, pc^{-3}$

these cores contain only a few % of the H$_2$ mass \Rightarrow globular clusters probe the highest peaks of the density field
Globular clusters at redshifts above 3 or 4?
peak of global SF

density!
metallicities at $z > 3$ are barely high enough for blue GCs

large range of metallicities of GCs formed at the same epoch: up to two orders of magnitude
Dynamical evolution removes most low-mass clusters

Jose Prieto & OG (2007)

Stellar evolution + relaxation + tidal shocks

final/initial mass = 0.46 final/initial number = 0.16
Mergers of host galaxies of GCs result in a spheroidal distribution of the overall GC system \textit{now}.

Number density is consistent with a power-law, slope ≈ -2.7

(observed ≈ -3)
Luminosity-metallicity distribution is also ok

Sasha Muratov & OG, in prep.
Feedback of young star clusters on their host galaxies

Young clusters for 5 Myr after formation have ionizing luminosity $\lambda L_{\lambda} \sim 10^8 L_\odot$ ($\sim 10^7 L_\odot$ for 10 Myr)

Luminous O and B stars ionize and heat the high density regions of parent molecular cloud. Subsequent supernovae expand into the reduced density, partially ionized medium \Rightarrow superbubbles

$$M_{\text{all GC}} \sim 3 \times 10^6 M_\odot \left(\frac{M_{\text{halo}}}{10^{11} M_\odot} \right) \sim 3 \times 10^6 M_\odot \left(\frac{M_{\text{bar}}}{10^{10} M_\odot} \right)$$

Young GCs can be directly detected in Lyα searches (for low [Fe/H] not much absorption by local dust)
– analogs of local super-starburst regions [Roderik Overzier talk]

Most massive clusters contain most massive stars:

- Likely sites for gamma-ray bursts and hypernovae
- Intermediate-mass black holes (gas accretion may lead to mini-quasars)