The role of dense, molecular gas during early stages of galaxy formation and evolution

Andrey Kravtsov
The University of Chicago

with

Brant Robertson
(U.Chicago)

Nick Gnedin
(Fermilab/U.Chicago)

Kostas Tassis
(U.Chicago)
Much of the gas in dwarf & LSB galaxies (and outskirts of normal spirals) is inert to star formation

NGC 2915 (Blue Compact Dwarf)

BLUE is HI (ATCA)

Meurer et al. 1996
Star formation in M33

low molecular fraction, especially in the outskirts

CO map: Blitz et al. 03; HI map: Deul & van der Hulst (1987)
Kennicutt-Schmidt relation in M33 is very steep

Heyer et al. 2004; see also Boissier et al. 2003

- Molecular KS relation: $\text{SFR} \sim f(\Sigma_{\text{H}_2}) \sim \Sigma_{\text{H}_2}^{1.4}$
- KS relation: $\text{SFR} \sim f(\Sigma_{\text{gas}}) \sim \Sigma_{\text{gas}}^{3.3}$
Dwarfs look like the outskirts of massive disks in terms of SF

Dwarf galaxies resemble outer regions of galaxies

Adopted from a talk by F. Walter
Locally, in individual molecular clouds:

\[\dot{\rho}_* = \frac{\rho_g}{t_*} \]

Krumholz & Tan (2006) show that for dense, molecular gas \(t_* \) scales as the free fall time of the dense gas: \(t_* = t_{ff}/SFR_{ff} \) with \(SFR_{ff} \) approximately independent of gas density.

When star formation in a disk is averaged on some (~kpc) scale:

\[\langle \dot{\rho}_* \rangle \propto \langle J_{SF} \rangle \langle \rho_g \rangle^{1.5} \]

- \(\langle \dot{\rho}_* \rangle \) fraction of total gas mass eligible for star formation
- \(\langle J_{SF} \rangle \) scale-height of all gas
- \(\langle \rho_g \rangle \) scale-height of young stars
- \(\langle \rho_g \rangle \) scale-height of all gas

Krumholz & Tan (2006) show that for dense, molecular gas \(t_* \) scales as the free fall time of the dense gas: \(t_* = t_{ff}/SFR_{ff} \) with \(SFR_{ff} \) approximately independent of gas density.

\[SFR_{ff} \sim 0.01 \]
An example: H_2-based star formation in a model disk galaxy

$$f_{H_2} = f_{H_2}(\rho_g, T, Z_g, U_{isrf})$$

$$\dot{\rho}_* = f_{H_2} \frac{\rho_g^{1.5}}{t_*}$$

$$t_* = 0.7\text{Gyr}$$

Gas surface density (colored by T)

SFR surface density vs. total gas surface density

- Massive galaxy: slope=2
- Intermediate galaxy: slope=3.3
- Dwarf galaxy: slope=4.2
Scaling with H2 fraction and scale-heights is as expected

\[\dot{\rho}_* \propto \langle f_{H2} \rangle \langle \rho_g \rangle^{1.5} \]

\[\Sigma_{SFR} \propto \langle \rho_\star \rangle h_{SFR} \]

\[\Sigma_g \propto \langle \rho_g \rangle h_g \]

steepening of the relation is mainly due to the strong dependence of molecular fraction on gas surface density at low \(\Sigma_g \)

linear relation
Modeling H2 in galaxy formation simulations

dense, molecular gas traces densest, high-pressure regions of the ISM

face-on and edge-on views of HI and H2 distribution in a z~4 gas disk

Galaxy formation simulation (ART code) with approximate 3D radiative transfer and a model for H2 formation on dust with approximate self-shielding using Sobolev approximation

Gnedin, N., Tassis, Kravtsov 2008, in prep
Molecular fraction as a function of gas surface and local 3D density

Strong trends with metallicity (dust content) and local UV flux

Implications

At high z (lower metallicities, higher UV flux), dense star forming gas is expected to be more compact compared to local galaxies. Most of the gas in low-mass systems, may then stay in atomic gas and be inert to star formation. This can have implications for a number of observations and theoretical expectations about galaxy evolution.

- Steeper Kennicutt-Schmidt relations can be expected in high-z galaxies. This can explain why dense DLA systems do not show the expected associated UV flux, predicted by the local KS relation (Wolfe & Chen 2007, Wild et al. 2007). Also, lower H2 content of DLAs compared to the MW, given their metallicity (e.g. Noterdaeme et al. 2008)

- Existence of very dense, compact (re<1 kpc) galaxies at z>2-3 (e.g., Zirm et al. 2007, Toft et al. 2007)

- Low escape fractions of ionizing UV photons from most high-z galaxies (Gnedin, Kravtsov & Chen 2008).

- Existence of undisturbed, massive stellar disks at z~2.0-3.0 (Stockton et al. 2007, Tacconi et al. 2008).
Distribution of young stars and HI in two simulated high-z galaxies

If young stars are deeply embedded in extended HI gas, the resulting escape fraction of UV photons is very small.