Supermassive black hole formation at high redshift

Muhammad Latif

Marie Curie fellow Institut d'Astrophysique de Paris, France

Marta Volonteri, Dominik Schleicher, Melanie Habouzit,Tilman Hartwig, Kazu Omukai, Jens Niemeyer, Wolfram Schmidt, Marco Spaans, Caroline Van Borm, Stefano Bovino, Tommaso Grassi

High z Quasars

- ★ Supermassive black holes
 with ~10⁹ solar masses
 have been observed at
 z>6.
- ★ The highest-redshift black hole currently observed is at z=7.085
 and has 2×10⁹ M_☉ (Mortlock et al. 2011).
- * The most massive black of 1.3×10^{10} M_o at z=6.3 (Wu et al. Nature 2015)

Wu et al. Nature 2015

Direct collapse scenario

Regan et al 2009

Cosmological simulations

Latif et al. 2013, 2014, 2015

Global properties of simulated halos

Simulations exploring the direct collapse

★Collapse occurs isothermally with T~ 8000 K *Provides large inflow rates of ~1M_o/yr Latif et al. 2013 MNRAS 433 1607L

Impact of H⁻ cooling & Realistic opacities

Latif, Schleicher & Hartwig, 2016, MNRAS

Impact of H⁻ cooling & Realistic opacities

Latif, Schleicher & Hartwig, 2016, MNRAS (arXiv:1510.02788)

Impact of H⁻ cooling & Realistic opacities

Latif, Schleicher & Hartwig, 2016, MNRAS (arXiv:1510.02788)

Masses of protostars/sinks

- + Employed sink particles and followed the evolution for 200,000 yrs
- + Massive protostars of about $10^5 \mbox{ M}_{\odot}$ are formed

Latif et al. 2013 MNRAS 436 2989L

Fraction of metal free halos

Latif et al. 2016 ApJ resubmitted, See Habouzit, ML et al 2016

Estimates of J_{crit} from 3D simulations

Number density of DCBHs

Habouzit, Volonteri, ML et al. 2016, Also see Habouzit, Volonteri, ML et al 2016 & Dijkstra et al. 2014

CR7: Potential host for a DCBH ?

Growth of a DCBH

Summary

 \blacktriangleright Direct isothermal collapse provides massive seeds of about $10^5~\mbox{M}_{\odot}$ but sites are rare

→Large accretion rates of ~0.1 M $_{\odot}$ /yr are found in simulations with moderate UV flux

Fragmentation occurs occasionally but clumps migrate inwards

 \blacktriangleright Difficult to grow a DCBH $10^4\,M_{\odot}\,$ in an atomic cooling halo

Radiative feedback from active BH limits its growth

