

Charlotte Mason (UCLA) Aspen, 7 Feb 2016 The First Galaxies: Evolution drivers via luminosity functions and spectroscopy through a magnifying GLASS with Tommaso Treu (UCLA), Michele Trenti (U. Melbourne), Kasper Schmidt (AIP),

Adriano Fontana (OAR) and the GLASS and BoRG teams

Reionization was likely associated with the formation of the first stars and galaxies

UV Luminosity functions are one of our best tools for studying high z galaxy populations and their evolution

Are there enough galaxies at z>8 to reionize the universe? What will JWST see?

What drives evolution in the LF?

What is the simplest theoretical model to connect halo growth to star formation rate? Mason, Trenti & Treu, ApJ, 2015

- minimal degrees of freedom
- self-consistency over redshift

Trenti+2010, Tacchella+2013

Our simple model is remarkably consistent with observed luminosity functions over 13 Gyr of cosmic time!

Our simple model is remarkably consistent with observed luminosity functions over 13 Gyr of cosmic time!

Faint galaxies are probably needed to reionize the universe

all galaxies detectable galaxies

 $f_{esc} = 0.1 - 0.3$ C = 1 - 6 $\log \xi_{ion} \sim 25.2 \ (\pm 0.15 \ dex)$ $Ouchi+2009, \ Robertson+2013, \ Schmidt+2014$ Reionization was the last major phase transformation of the universe and likely associated with the formation of the first stars and galaxies

Is the sudden evolution in $Ly\alpha$ emission at z>6 the smoking gun of Reionization?

We are expanding the search for $Ly\alpha$ at z>7 by exploiting the power of cluster lenses

Grism Lens-Amplified Survey from Space glass.astro.ucla.edu

HST Grism Spectroscopy of 10 massive clusters

PI Treu, see Schmidt+2014,Treu+2015 140 orbits in Cycle 21 Including the 6 HFF and 8 CLASH clusters

Investigate galaxies and IGM at EoR [Schmidt+(incl CM) 2016]

- Environmental dependance on galaxy evolution [Vulcani+2015]
- Metallicity cycles in and out of galaxies [Jones+2015, Wang+in prep]
- SN searches, e.g. SN Refsdal [Kelly+2015]
- Cluster mass maps [Wang+2015, Hoag+in prep]

Data released for 7/10 clusters https://archive.stsci.edu/prepds/glass/

- Uninterrupted wavelength coverage
- 2 position angles to minimise contamination and better line identification
- Spectra of 1000s of objects with $m_{\rm F140W} < 24$
- Probes intrinsically faint objects due to cluster magnification
- Spectroscopic 1σ limits ~ $5x10^{-18}$ erg/s/cm² (not accounting for lensing)

In 6 clusters, using >20 photometric selections for LBGs - 24/159 dropouts have Ly α (Schmidt+2016)

- consistent with drop from z~6

Largest statistically well-defined spectroscopic sample of Lyman break galaxies at z>6

But higher spectral resolution is needed to confirm $\mbox{Ly}\alpha$ and constrain HST grism purity & completeness

VLT KMOS large program (PI Fontana)

- 7 clusters ongoing until March 2017
- 10 15 hrs integration per source
- YJ band: 1 1.35 µm
 - ~70 z>7 sources (~1/3 grism Lya)
 - ~70 sources 1<z<3

Keck DEIMOS and MOSFIRE (PI Bradač)

1 secure detection (Huang+2015) 3 more potential confirmations

Conclusions

UV LF and other global galaxy properties at $0 \le z \le 10$ can be easily modelled by assuming halo growth is the dominant driver of galaxy growth

Apart from dust, no evolution of physical conditions/feedback is needed!

Lensing allows us to see intrinsically faint galaxies

24/159 Lya candidates in 6/10 clusters consistent with significant drop from z~6 Extensive ground based follow-up is ongoing at VLT and Keck