

EVIDENCE FOR A DIRECT COLLAPSE BLACK HOLE IN THE LYMAN-ALPHA SOURCE CR7

AARON SMITH

The Reionization Epoch: New Insights and Future Prospects

March 11, 2016

Volker Bromm & Avi Loeb

THE HIGH REDSHIFT FRONTIER

 $Ly\alpha$ radiative transfer helps to connect simulations and observations. We focus on modeling the first galaxies.

LY α emission from the cr7 source

- Component A dominates the Lylpha emission * Sobral et al. (2015)
- Nature of the source? Pop III or DCBH? & Matthee et al. (2015)
- Unlikely: AGN, Wolf-Rayet stars, SNe, Pop II stars (Ly α line not broad, no metal lines, hard spectrum)

LYMAN-ALPHA RADIATIVE TRANSFER

- Resonant scattering \Rightarrow diffusion in position and frequency!
- \cdot Rare excursions to the wing facilitate escape ($au\gtrsim$ 10⁶)

LYlpha trapping in the expanding shell model

- Multiple scattering acts as a force multiplier
 * Dijkstra & Loeb (2008)
- Order of magnitude estimates based on idealized Ly α RT: Cox (1985), Bithell (1990), Haehnelt (1995), Henney & Arthur (1998), Oh & Haiman (2002), McKee & Tan (2008), Milosavljević et al. (2009), Wise et al. (2012)

DYNAMIC IMPACT OF LY lpha radiation pressure

 $M_{\rm vir}~({\rm M}_{\odot})$

- $\cdot r_{eq} \equiv$ radius at which Ly α force exceeds gravity
- Post-processing hints warrant further study

DYNAMIC IMPACT OF LY lpha radiation pressure

- $r_{\rm eq} \equiv$ radius at which Ly α force exceeds gravity
- Post-processing hints warrant further study

DYNAMIC IMPACT OF LY $\!\alpha$ radiation pressure

- $r_{\rm eq} \equiv$ radius at which Ly α force exceeds gravity
- Post-processing hints warrant further study

${\rm LY}\alpha$ radiation hydrodynamics

- Radiation-hydrodynamics simulations incorporating Lyα feedback have not been performed. Why? (sub-dominant or too expensive)
- However, assessing the impact of Ly α radiation pressure must include hydrodynamical coupling.
- Necessary physics and helpful simplifications:
 - (i) Accurate Ly α radiative transfer (COLT)
 - (ii) Self-consistent ionizing radiation
 - (iii) Spherical symmetry computationally feasible, simplifies algorithms and hydrodynamics

COSMIC LY α TRANSFER CODE (COLT)

- Monte-Carlo Radiative Transfer (MCRT)
- Massively parallel (MPI+OpenMP workflow)
- 3D ray tracing with mesh refinement (octrees)
- Additional optimizations:
 - Core-skipping \rightarrow wing photons
 - Generating atomic velocities
 - Local approximation of the optical depth
- Calculates line-of-sight flux and surface brightness for (x, y, λ) output
- MC estimators for energy, force, and pressure

 $\left[\tau_{\nu} = \int n \sigma_{\nu} d\ell \right]$

PYDRO: HYDRODYNAMICS IN PYTHON

pydro: 1D Lagrangian hydrodynamics solver (Ly α uses C++) Ionizing radiation and Ly α radiation pressure

HYDRODYNAMICAL EVOLUTION OF CR7

• Evolution of the gas number density and velocity.

PROPAGATION OF THE SHELL FRONT

• Models: Pop III starburst (10⁵ K blackbody) and massive black hole (MBH) Compton-thick spectrum from Pacucci et al. (2015)

${\rm LY}\alpha$ line flux

• Residual neutral hydrogen significantly affects the emergent Ly α spectrum (160 km/s velocity offset).

LY α radial surface brightness

• The spatial extent of the Ly α emitting region corresponds to the shell size (~ 16 kpc diameter \Rightarrow need more time).

- Ly α sources provide observational clues about the formation and evolution of the first galaxies (\lesssim 1 Gyr).
- Ly α radiation pressure turns out to be dynamically important.
- Our Ly α RHD simulations support the direct collapse black hole model of CR7. Pop III stars ionize too efficiently, $\Delta v \sim 0$.
- See also arguments related to DCBH formation (Pallottini et al. 2015, Agarwal et al. 2015), metal enrichment (Hartwig et al. 2015, Visbal et al. 2016), the Ly α signature (Dijkstra et al. 2016), and *ab initio* cosmological simulations (Smidt et al. 2016).

LYlpha radial surface brightness density

- The black hole model provides time for shell expansion.
- However, Δv decreases. Limitations of 1D calculations?
- Further caveats? Anisotropic escape, continuum leakage, self-shielding clumps, low column density holes?

RADIAL PROFILE OF ACCELERATION COMPONENTS

• Contributions from Ly α photons, gas pressure, ionizing momentum transfer, and gravity.