Atomic, Molecular, and Optical Physics in the Early Universe: From Recombination to Reionization

Simon C.O. Glover*, Jens Chluba†, Steve R. Furlanetto‡, Jonathan R. Pritchard§, Daniel Wolf Savin¶

*Institut für Theoretische Astrophysik, Universität Heidelberg, Heidelberg, Germany
†Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland, USA
‡Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, California, USA
§Astrophysics Group, Imperial College, London, United Kingdom
¶Columbia Astrophysics Laboratory, Columbia University, New York, USA

Outline

Pop III star formation in low mass halos

- $H^- + H \rightarrow H_2 + e^-$
- $H + H + H \rightarrow H_2 + H$
H$_2$ formation during atomic phase of primordial clouds

Associative detachment (AD)

\[\text{H}^- + \text{H} \rightarrow \text{H}_2 + \text{e}^- \]

How well do we understand this simple reaction?

- Factor of ten spread.

Are there cosmological implications?

- Yes!
The apparatus the day after first signal

\[\text{H}_2^+ \rightarrow \text{H}_2 \rightarrow \text{H}_2^+ \]

Detachment

Form \(\text{H}_2 \)

Laser

\[\text{H}_- \]
H⁻ + H → H₂ + e⁻ rate coefficient

Theory and experiment have now converged on the rate coefficient for this reaction.
Implications for Pop III.2 star formation

- Initially ionized gas
- 3D simulation.
- Red & black due to previous AD uncert.
- Other points show new ±25% uncert.
- M_J uncertainty goes from 20 to 2!

Stellar mass scale related gas T_{\min} (Larson MNRAS 2005).

\[M_J \propto T^{3/2} n^{-1/2} \]

(Kreckel et al. 2010, Science, 329, 69)
What was the IMF for the Pop III stars?

AD is important when cloud is < 0.01% H$_2$.
Plays a key role in setting the upper limit for M_j.
But the mass of first stars still a big unknown.
Depends on physical conditions of initial cloud.
Depends on how cloud go to fully molecular H$_2$.
How does the cloud go fully molecular?

Three Body Association (3BA)

\[\text{H} + \text{H} + \text{H} \rightarrow \text{H}_2 + \text{H} + 4.48 \text{ eV} \]

Factor of \(\sim 100 \) spread in data at relevant \(T \).
Overview of published 3BA data

Implications of 3BA uncertainty

Has potentially important implications for ability of gas to fragment and form multiple stars.

Conclusions

- $\text{H}^{-} + \text{H} \rightarrow \text{H}_2 + \text{e}^{-}$ is now well understood.
- $\text{H} + \text{H} + \text{H} \rightarrow \text{H}_2 + \text{H}$ needs laboratory data.
- Sensitivity studies are needed to identify critical AMO data needs.